By Topic

Power-aware computing for multi-agent systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vaenthan Thiruvarudchelvan ; Center for Research in Complex Systems, Charles Sturt University, Bathurst, Australia ; Terry Bossomaier

Agent-based modelling is becoming a common technique for studying complex phenomenon in diverse fields including sociology, economics and biology. This technique is assisted by the continuing exponential and pervasive growth in computing power. In recent years, engineering limits on processor speed have spurred focus on multi-core processing as a means of continuing this growth. In order to harness this computing power, however, careful concurrent programming is required to develop multi-threaded applications. Furthermore, the power consumed by systems has come under increasing scrutiny from the standpoints of thermal capacity, energy availability, and sustainability. We investigated two schemes for reducing simulation power demands using The Game of Life as a representative simulation: a) event-driven computation and b) dynamic frequency scaling in multi-threaded rate-limited applications. Both schemes were found to significantly improve energy efficiency. Both event-driven and parallelized computation are central to the low power usage of biological computation compared to silicon.

Published in:

Artificial Life (ALIFE), 2011 IEEE Symposium on

Date of Conference:

11-15 April 2011