By Topic

A Memetic Algorithm for Periodic Capacitated Arc Routing Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi Mei ; Nature Inspired Comput. & Applic. Lab., Univ. of Sci. & Technol. of China, Hefei, China ; Ke Tang ; Xin Yao

This paper investigates the Periodic Capacitated Arc Routing Problem (PCARP), which is often encountered in the waste collection application. PCARP is an extension of the well-known Capacitated Arc Routing Problem (CARP) from a single period to a multi-period horizon. PCARP is a hierarchical optimization problem which has a primary objective (minimizing the number of vehicles ) and a secondary objective (minimizing the total cost ). An important factor that makes PCARP challenging is that its primary objective is little affected by existing operators and thus difficult to improve. We propose a new Memetic Algorithm (MA) for solving PCARP. The MA adopts a new solution representation scheme and a novel crossover operator. Most importantly, a Route-Merging (RM) procedure is devised and embedded in the algorithm to tackle the insensitive objective . The MA with RM (MARM) has been compared with existing meta-heuristic approaches on two PCARP benchmark sets and a real-world data set. The experimental results show that MARM obtained better solutions than the compared algorithms in much less time, and even updated the best known solutions of all the benchmark instances. Further study reveals that the RM procedure plays a key role in the superior performance of MARM.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:41 ,  Issue: 6 )