Cart (Loading....) | Create Account
Close category search window
 

Application of the LP-ELM Model on Transportation System Lifetime Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhan-Li Sun ; Dept. of Ind. & Syst. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Kien Ming Ng ; Soszynska-Budny, J. ; Habibullah, M.S.

Considering factors such as economic costs and lives, an unreliable transportation system is more likely to cause severe consequences. Therefore, reliability optimization of transportation systems has attracted much attention over the past several decades. The traditional reliability optimization design is usually focused on redundancy allocation or reliability redundancy allocation. In practice, the operation process usually has a significant influence on the transportation system lifetime. By combining linear programming (LP) and extreme learning machine (ELM), a two-stage approach is proposed to optimize the transportation system lifetime, in which a semi-Markov model (SMM) is used to model the operation process. In the proposed method, we first formulate the optimization problem as an LP model, and the LP algorithm is utilized to search for the approximate optimal state probabilities. After data production and sample selection, ELM is trained with the produced training data and used to predict the optimal sojourn time distribution parameters. Applications on three different cases demonstrate that a higher lifetime can be ensured for the transportation system by using the proposed method.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:12 ,  Issue: 4 )

Date of Publication:

Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.