By Topic

High Performance Control Design for Dynamic Voltage Scaling Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Carolina Albea ; CEA-LETI Minatec campus, Grenoble, France ; Francisco Gordillo ; Carlos Canudas de Wit

Dynamic voltage scaling (DVS) is an important method in managing dynamically the system supply voltage for efficient power reduction. This approach is applied in very large scale integration (VLSI). A dc-dc converter is an electronic device which allows to vary the voltage and, thus, to implement DVS technique. In this paper, a high-performance controller is presented for a novel discrete DVS converter. This controller is developed with the aim to deal with the unknown resistive component of the load as well as to minimize the dissipated energy and current peaks, what is very important in the field of microelectronics. Current peaks and power consumption are minimized by computing an optimal evolution for the voltage reference. Likewise, an adaptive controller is proposed to deal with the unknown load resistive parameter. Consequently, the obtained advanced controller can acquires a high consideration on electronic devices.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:58 ,  Issue: 12 )