By Topic

Pulse Delay Via Tunable White Light Cavities Using Fiber-Optic Resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Honam Yum ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA ; Xue Liu ; Young Joon Jang ; May Eunyeon Kim
more authors

Previously, we proposed a data buffering system that makes use of a pair of white light cavities. For application to telecommunication systems, it would be convenient to realize such a device using fiber-optic resonators. In this paper, we present the design of such a system, where the white light cavity effect is produced by using stimulated Brillouin scattering. The system consists of a pair of fiber-optic white light cavities placed in series. As in the original proposal, the delay time can be controlled independently of the bandwidth of the data pulses. Furthermore, we show how the bandwidth of the system can be made as large as several times the Brillouin frequency shift. We also show that the net delay achievable in such a buffer can be significantly larger than what can be achieved using a conventional recirculating loop buffer.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 18 )