Cart (Loading....) | Create Account
Close category search window
 

An equivalent circuit model for transmitting capacitive micromachined ultrasonic transducers in collapse mode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Olcum, S. ; Electr. & Electron. Eng. Dept., Bilkent Univ., Ankara, Turkey ; Yamaner, F.Y. ; Bozkurt, A. ; Koymen, H.
more authors

The collapse mode of operation of capacitive micromachined ultrasonic transducers (CMUTs) was shown to be a very effective way to achieve high output pressures. However, no accurate analytical or equivalent circuit model exists for understanding the mechanics and limits of the collapse mode. In this work, we develop an equivalent nonlinear electrical circuit that can accurately simulate the mechanical behavior of a CMUT with given dimensions and mechanical parameters under any large or small signal electrical excitation, including the collapse mode. The static and dynamic deflections of a plate predicted from the model are compared with finite element simulations. The equivalent circuit model can estimate the static deflection and transient behavior of a CMUT plate to within 5% accuracy. The circuit model is in good agreement with experimental results of pulse excitation applied to fabricated CMUTs. The model is suitable as a powerful design and optimization tool for collapsed and uncollapsed CMUTs.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:58 ,  Issue: 7 )

Date of Publication:

July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.