By Topic

Bandpass sampling of high-frequency tissue motion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Eskandari, H. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Goksel, O. ; Salcudean, S.E. ; Rohling, Robert

The characterization of tissue viscoelastic properties requires the measurement of tissue motion over a region of interest at frequencies that significantly exceed the frame rates of conventional ultrasound systems. In this paper, we propose that the bandpass sampling technique be applied to tissue motion sampling. With this approach, high-frequency signals limited to a frequency band can be sampled and reconstructed without aliasing at a sampling frequency that is lower than the Nyquist rate. We first review this approach and discuss the selection of the tissue excitation frequency band and of the feasible sampling frequencies that allow signal reconstruction without aliasing. We then demonstrate the approach using simulations based on the finite element method and ultrasound simulations. Finally, we perform experiments on tissue-mimicking materials and demonstrate accurate motion estimation using a lower sampling rate than that required by the conventional sampling theorem. The estimated displacements were used to measure the elasticity and viscosity in a phantom in which an inclusion has been correctly delineated. Thus, with bandpass sampling, it is feasible to use conventional beamforming on diagnostic ultrasound systems to perform high-frequency dynamic elastography. The method is simple to implement because it does not require beam interleaving, additional hardware, or synchronization.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:58 ,  Issue: 7 )