By Topic

State assignment for sequential circuits using multi-objective genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Al Jassani, B.A. ; Edinburgh Napier Univ., Edinburgh, UK ; Urquhart, N. ; Almaini, A.E.A.

In this study, a new approach using a multi-objective genetic algorithm (MOGA) is proposed to determine the optimal state assignment with less area and power dissipations for completely and incompletely specified sequential circuits. The goal is to find the best assignments which reduce the component count and switching activity. The MOGA employs a Pareto ranking scheme and produces a set of state assignments, which are optimal in both objectives. The ESPRESSO tool is used to optimise the combinational parts of the sequential circuits. Experimental results are given using a personal computer with an Intel CPU of 2.4 GHz and 2 GB RAM. The algorithm is implemented using C and fully tested with benchmark examples. The experimental results show that saving in components and switching activity are achieved in most of the benchmarks tested compared with recent published research.

Published in:

Computers & Digital Techniques, IET  (Volume:5 ,  Issue: 4 )