By Topic

Blur identification with assumption validation for sensor-based video reconstruction and its implementation on field programmable gate array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Angelopoulou, M.E. ; Dept. of Electr. & Electron. Eng., Imperial Coll. London, London, UK ; Bouganis, C.-S. ; Cheung, P.Y.K.

Restoration methods, such as super-resolution (SR), largely depend on the accuracy of the point spread function (PSF). PSF estimation is an ill-posed problem, and a linear and uniform motion is often assumed. In real-life systems, this may deviate significantly from the actual motion, impairing subsequent restoration. To address the above, this work proposes a dynamically configurable imaging system that combines algorithmic video enhancement, field programmable gate array (FPGA)-based video processing and adaptive image sensor technology. Specifically, a joint blur identification and validation (BIV) scheme is proposed, which validates the initial linear and uniform motion assumption. For the cases that significantly deviate from that assumption, the real-time reconfiguration property of an adaptive image sensor is utilised, and the sensor is locally reconfigured to larger pixels that produce higher frame-rate samples with reduced blur. Results demonstrate that once the sensor reconfiguration gives rise to a valid motion assumption, highly accurate PSFs are estimated, resulting in improved SR reconstruction quality. To enable real-time reconstruction, an FPGA-based BIV architecture is proposed. The system's throughput is significantly higher than 25 fps, for frame sizes up to 1024 × 1024, and its performance is robust to noise for signal-to-noise ratio (SNR) as low as 20 dB.

Published in:

Computers & Digital Techniques, IET  (Volume:5 ,  Issue: 4 )