Cart (Loading....) | Create Account
Close category search window
 

Field programmable gate array-based acceleration of shortest-path computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jagadeesh, G.R. ; Centre for High Performance Embedded Syst., Nanyang Technol. Univ., Singapore, Singapore ; Srikanthan, T. ; Lim, C.M.

There exist several practical applications that require high-speed shortest-path computations. In many situations, especially in embedded applications, an field programmable gate array (FPGA)-based accelerator for computing the shortest paths can help to achieve high performance at low cost. This study presents an FPGA-based distributed architecture for solving the single-source shortest-path problem in a fast and efficient manner. The proposed architecture is based on the Bellman-Ford algorithm adapted to facilitate early termination of computation. One of the novelties of the architecture is that it does not involve any centralised control and the processing elements (PEs), which are identical in construction, operate in perfect synchronisation with each other. The functional correctness of the design has been verified through simulations and also in actual hardware. It has been shown that the implementation on a Xilinx Virtex-5 FPGA is more than twice as fast as a software implementation of the algorithm on a high-end general-purpose processor that runs at an order-of-magnitude faster clock. The speed-up offered by the design can be further improved by adopting an interconnection topology that maximises the data transfer rate among the PEs.

Published in:

Computers & Digital Techniques, IET  (Volume:5 ,  Issue: 4 )

Date of Publication:

July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.