Cart (Loading....) | Create Account
Close category search window
 

An optical flow based motion compensation algorithm for very low bit-rate video coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shu Lin ; Dept. of Electr. & Comput. Eng., New Jersey Inst. of Technol., Newark, NJ, USA ; Shi, Y.Q. ; Ya-Qin Zhang

We propose an efficient compression algorithm for very low bit-rate video applications. The algorithm is based on (1) optical-flow motion estimation to achieve more accurate motion prediction fields; (2) DCT-coding of the motion vectors from the optical-flow estimation to further reduce the motion overheads; and (3) a region adaptive threshold technique to match optical flow motion prediction and minimize the residual errors. Unlike the classic block-matching based discrete cosine transformation (DCT) video coding schemes in MPEG 1/2 and H.261/3, the proposed algorithm uses optical flow for motion compensation and the DCT is applied to the optical flow field instead of predictive errors. Thresholding techniques are used to treat different regions to complement the optical flow technique and to efficiently code residual data. While maintaining comparable peak signal to noise ratio (PSNR) and computational complexity with that of ITU-T H.263/TMN5, the reconstructed video frames of the proposed coder are free of annoying blocking artifacts, and hence visually much more pleasant

Published in:

Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on  (Volume:4 )

Date of Conference:

21-24 Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.