Cart (Loading....) | Create Account
Close category search window

Schedulability analysis of distributed cyber-physical applications on mixed time-/event-triggered bus architectures with retransmissions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Masrur, A. ; Tech. Univ. Munich, Munich, Germany ; Goswami, D. ; Schneider, R. ; Voit, H.
more authors

In this paper we study the setup where multiple cyber-physical applications are partitioned and mapped onto spatially distributed electronic control units (ECUs). Further, applications communicate over a mixed time-/event-triggered bus like FlexRay. Such a setting commonly arises in automotive and other distributed cyber-physical systems. All control messages mapped onto the time-triggered or static segment of the bus result in negligible/zero communication delays (viz., the bus and the ECUs can be perfectly synchronized) and hence good control performance. At the other extreme, all messages scheduled in the priority-driven dynamic segment often result in poor control performance because of the intrinsic timing non-determinism of priority-based protocols. In this paper we are concerned with the intermediate case - where messages are dynamically moved between the time- and event-triggered segments in order to meet performance requirements in the presence of disturbances - and formally study the schedulability analysis problem on the bus. In particular, we propose a novel scheduling strategy that considerably reduces the number of static time-triggered slots required in such a switching scheme to meet specified performance requirements. The basic premise of our work is that time-triggered slots are expensive and, hence, they should be used sparingly. We further demonstrate the benefits of our proposed scheme through a number of illustrative examples.

Published in:

Industrial Embedded Systems (SIES), 2011 6th IEEE International Symposium on

Date of Conference:

15-17 June 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.