Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Multi-criteria optimization for mapping programs to multi-processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cotton, S. ; VERIMAG, Grenoble, France ; Maler, O. ; Legriel, J. ; Saidi, S.

Finding tradeoffs in design space is naturally formulated as a multicriteria optimization problem. In this paper, we model tradeoffs between communication cost and the balance of processor workloads for the problem of mapping applications to processors in a multicore environment. We formulate several query strategies for finding Pareto optimal and approximately Pareto optimal solutions to the mapping problem using a constraint solver as a time-bounded oracle. Each of the strategies directs the oracle through the search space in a different manner. We evaluate the efficiency of these strategies on a series of synthetic benchmarks, and on two industrial applications, a video noise reduction, and an image demosaic color filtering. The results indicate a significant tradeoff between precision and computation time, and a corresponding benefit to time-bounded queries.

Published in:

Industrial Embedded Systems (SIES), 2011 6th IEEE International Symposium on

Date of Conference:

15-17 June 2011