Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A Systematic Approach toward Automated Performance Analysis and Tuning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Guojing Cong ; IBM T.J. Watson Res. Center, Yorktown Heights, NY, USA ; I-Hsin Chung ; Hui-Fang Wen ; Klepacki, D.
more authors

High productivity is critical in harnessing the power of high-performance computing systems to solve science and engineering problems. It is a challenge to bridge the gap between the hardware complexity and the software limitations. Despite significant progress in programming language, compiler, and performance tools, tuning an application remains largely a manual task, and is done mostly by experts. In this paper, we propose a systematic approach toward automated performance analysis and tuning that we expect to improve the productivity of performance debugging significantly. Our approach seeks to build a framework that facilitates the combination of expert knowledge, compiler techniques, and performance research for performance diagnosis and solution discovery. With our framework, once a diagnosis and tuning strategy has been developed, it can be stored in an open and extensible database and thus be reused in the future. We demonstrate the effectiveness of our approach through the automated performance analysis and tuning of two scientific applications. We show that the tuning process is highly automated, and the performance improvement is significant.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 3 )