By Topic

A 16-kV HBM RF ESD Protection Codesign for a 1-mW CMOS Direct Conversion Receiver Operating in the 2.4-GHz ISM Band

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gonzalez, J.L. ; Electron. Eng. Dept., Univ. Politec. de Catalunya, Barcelona, Spain ; Solar, H. ; Adin, I. ; Mateo, D.
more authors

A decreasing-sized π -model electrostatic discharge (ESD) protection structure is presented and applied to protect against ESD stresses at the RF input pad of an ultra-low power CMOS front-end operating in the 2.4-GHz industrial-scientific-medical band. The proposed ESD protection structure is composed of a pair of ESD devices located near the RF pad, another pair close to the core circuit, and a high-quality integrated inductor connecting these two pairs. This structure can sustain a human body-model ESD level higher than 16 kV and a machine-model ESD level higher than 1 kV without degrading the RF performance of the front-end. A combined on-wafer transmission line pulse and RF test methodology for RF circuits is also presented confirming previous results. The front-end implements a zero-IF receiver. It has been implemented in a standard 2P6M 0.18-μm CMOS process. It exhibits a voltage gain of 24 dB and a single-sideband noise figure of 8.4 dB, which make it suitable for most of the 2.4-GHz wireless short-range communication transceivers. The power consumption is only 1.06 mW from a 1.2-V voltage supply.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 9 )