By Topic

Energy-Based Swing-Up Control for a Remotely Driven Acrobot: Theoretical and Experimental Results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xin Xin ; Fac. of Comput. Sci. & Syst. Eng., Okayama Prefectural Univ., Okayama, Japan ; Yamasaki, T.

This brief concerns the energy-based swing-up control for a remotely driven acrobot (RDA) which is a 2-link planar robot with the first link being underactuated and the second link being remotely driven by an actuator mounted at a fixed base through a belt. An energy-based swing-up controller is designed via the Lyapunov stability theory. A global motion analysis of the RDA under the designed controller is provided focusing on the behavior of the closed-loop solution and the stability of the closed-loop equilibrium points. The conditions on control parameters for achieving a successful swing-up control are given. Furthermore, an experimental setup is described and experimental results are given to validate the presented theoretical results. The energy-based swing-up controller for the RDA is shown to be effective both theoretically and practically.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:20 ,  Issue: 4 )