By Topic

Learning Stable Nonlinear Dynamical Systems With Gaussian Mixture Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khansari-Zadeh, S.M. ; Sch. of Eng., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Billard, A.

This paper presents a method to learn discrete robot motions from a set of demonstrations. We model a motion as a nonlinear autonomous (i.e., time-invariant) dynamical system (DS) and define sufficient conditions to ensure global asymptotic stability at the target. We propose a learning method, which is called Stable Estimator of Dynamical Systems (SEDS), to learn the parameters of the DS to ensure that all motions closely follow the demonstrations while ultimately reaching and stopping at the target. Time-invariance and global asymptotic stability at the target ensures that the system can respond immediately and appropriately to perturbations that are encountered during the motion. The method is evaluated through a set of robot experiments and on a library of human handwriting motions.

Published in:

Robotics, IEEE Transactions on  (Volume:27 ,  Issue: 5 )