By Topic

An Adaptive Observer With Online Rotor and Stator Resistance Estimation for Induction Motors With One Phase Current Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Salmasi, F.R. ; Sch. of Electr. & Comput. Eng., Univ. of Tehran, Tehran, Iran ; Najafabadi, T.A.

An adaptive observer with online estimation of rotor and stator resistances is considered for induction motors, while only one phase current is measured. Generally, an induction motor drive controller needs at least two phase-current sensors. Nevertheless, failure of one current sensor results in degradation of motor drive performance and reliability, and also state and parameter estimation errors. Furthermore, any controller or observer in induction motor drives should be robust to rotor and stator resistance variations. The proposed observer is capable of concurrent estimation of stator currents and rotor fluxes with online tuning of rotor and stator resistances, while rotor speed and only one phase current are available. Stability and convergence of the observer are analytically verified based on the partial stability theory. The observer equations and adaptation laws can be easily implemented, which makes it attractive for industrial development of fault tolerant drives. A complex programmable logic device is implemented for the experimental setup that controls an intelligent power module including insulated gate bipolar transistors. Extensive simulation and experimental tests verify the asymptotic convergence of the proposed observer.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:26 ,  Issue: 3 )