Cart (Loading....) | Create Account
Close category search window
 

Robust block-matching motion-estimation technique for noisy sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Armitano, R.M. ; Digital Signal Process. Lab., Georgia Inst. of Technol., Atlanta, GA, USA ; Schafer, R.W. ; Kitson, F.L. ; Bhaskaran, V.

Video coding standards use the block-matching algorithm (BMA) and motion-compensated prediction to reduce temporal redundancies present in image sequences. Block matching is used since it is computationally efficient and produces a minimal representation of the motion field that is transmitted as side information. In order to build a robust coder the motion-estimation technique must be able to track motion in a noisy source. The approach presented in this paper uses spatio-temporal motion prediction, providing an accurate motion estimate even in the presence of noise. With this approach, noisy sources can be compressed efficiently and robustly in standard video coders (e.g., MPEG-1, MPEG-2, H.261, and H.263) with little increase in complexity

Published in:

Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on  (Volume:4 )

Date of Conference:

21-24 Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.