By Topic

Wide area monitoring in power systems using cellular neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Luitel, B. ; Real-Time Power & Intell. Syst. Lab., Missouri Univ. of Sci. & Technol., Rolla, MO, USA ; Venayagamoorthy, G.K.

The demand of power and the size and complexity of the power system is increasing. Wide area monitoring and control is an integral part in transitioning from the traditional power system to a Smart Grid. However, wide area monitoring becomes challenging as the size of the electric power grid, and consequently the number of components to be monitored, grows. Wide area monitor (WAM) designed using feed-forward and feedback neural network architectures do not scale up to handle the growing complexity of the Smart Grid. In this paper, cellular neural network (CNN) is presented as a way to provide scalability in the development of a WAM for Smart Grid. The CNN based WAM is compared with multilayer perceptrons (MLP) based WAM on two different power systems. The results show that the CNN has better or comparable performance with, and scales up much better than, MLP.

Published in:

Computational Intelligence Applications In Smart Grid (CIASG), 2011 IEEE Symposium on

Date of Conference:

11-15 April 2011