Cart (Loading....) | Create Account
Close category search window
 

Introduction to CPM-SC-FDMA: A Novel Multiple-Access Power-Efficient Transmission Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wylie-Green, M.P. ; Nokia Siemens Networks, Irving, TX, USA ; Perrins, E. ; Svensson, T.

This paper presents a novel multiple-access modulation scheme which combines key characteristics of single carrier frequency division multiple access (SC-FDMA) with continuous phase modulation (CPM) in order to generate a power efficient waveform. CPM-SC-FDMA is developed based upon the observation that the samples from a CPM waveform may be treated as "data symbols" taken from a constant-envelope encoder. As with any encoder output, these samples may be precoded using the Discrete Fourier Transform and transmitted using SC-FDMA. Having originated from a constant envelope CPM waveform, CPM-SC-FDMA can potentially retain much of the power efficiency of CPM-thus resulting in a lower peak-to-average power ratio (PAPR) than conventional SC-FDMA. In this paper, we account for the information rate, memory, power efficiency, bit error rate (BER) performance and spectral occupancy of CPM-SC-FDMA. In addition, we investigate the impact of amplifier nonlinearity on BER performance as the number of users increases. Finally, we provide a detailed numerical comparison with a commensurate convolutionally coded QPSK-SC-FDMA scheme (CC-QPSK-SC-FDMA). We show a CPM-SC-FDMA scheme that provides an overall gain of up to 4 dB relative to the CC-QPSK-SC-FDMA scheme over a frequency-selective channel.

Published in:

Communications, IEEE Transactions on  (Volume:59 ,  Issue: 7 )

Date of Publication:

July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.