Cart (Loading....) | Create Account
Close category search window
 

A Belief Propagation Based Power Distribution System State Estimator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ying Hu ; Univ. of Hawaii at Manoa, Honolulu, HI, USA ; Kuh, A. ; Yang, Tao ; Kavcic, A.

The most popular method used in traditional power system state estimation is the Maximum Likelihood Estimation (MLE). It assumes the state of the system is a set of deterministic variables and determines the most likely state via error included interval measurements. In the distribution system, the measurements are often too sparse to fulfill the system observability. Instead of introducing pseudo-measurements, we propose a Belief Propagation (BP) based distribution system state estimator. This new approach assumes that the system state is a set of stochastic variables. With a set of prior distributions, it calculates the posterior distributions of the state variables via real-time sparse measurements from both traditional measurements and the high resolution smart metering data. In this paper we discuss the step-by-step method of applying the BP algorithm on the distribution system state estimation problem. Our approach provides a seamless connection from the monitoring of transmission system to the feeder circuit, thus filling in the gap between the traditional energy management system (EMS) and the micro-grid customer level optimization. Furthermore, the proposed state estimator can not only be applied to the multi-level electrical coupled grid, but also accommodate the spatial-temporal model for the correlated distributed renewable energy resources. It provides a way of integrating the distributed renew able energy management system into the Smart-Grid Distribution Management System (DMS) and automated substations.

Published in:

Computational Intelligence Magazine, IEEE  (Volume:6 ,  Issue: 3 )

Date of Publication:

Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.