By Topic

Secure and Efficient Capability-Based Power Management in the Smart Grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dongwon Seo ; Div. of Comput. & Commun. Eng., Korea Univ., Seoul, South Korea ; Heejo Lee ; Perrig, A.

As a smart grid is becoming a promising technology to control and save power generation and consumption, smart grid security should be a preliminary consideration to prevent from catastrophic failures. Especially, excessive power consumption can be a significant issue, because power provider cannot react quickly to such massive demand that can cause blackouts through wide regions. Many studies, such as DDoS prevention schemes, have been done to solve excessive resource consumption for the legacy networks (e.g., the Internet). However, power management in the smart grid needs its own requirements: reliable power supply, privacy preservation, efficient data communication and malicious behavior detection. Existing smart grid schemes consider some of the requirements, but do not address all the requirements. In order to satisfy the four requirements, we propose a secure and efficient power management mechanism leveraging a homomorphic data aggregation and capability-based power distribution. The proposed mechanism enables to gather the power demands of customers securely and efficiently, and to distribute power to customers who have the capability. Furthermore, each customer can verify whether one's request is correctly delivered to the utility, and each distributor can detect misbehaving customers exceeding their capabilities. From our evaluation, we show that a power provider consumes 11.12 seconds until power distribution. It is a tolerably short time for a power provider to endure against excessive power consumption. Through this paper, we proposes the first concept of secure and efficient power management in the smart grid.

Published in:

Parallel and Distributed Processing with Applications Workshops (ISPAW), 2011 Ninth IEEE International Symposium on

Date of Conference:

26-28 May 2011