By Topic

Extreme Short-Channel Effect on RTS and Inverse Scaling Behavior: Source–Drain Implantation Effect in 25-nm nand Flash Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Taehoon Kim ; Micron Technol., Inc., Boise, ID, USA ; Franklin, N. ; Srinivasan, C. ; Kalavade, P.
more authors

In 25-nm NAND Flash memory, source-drain implantation conditions significantly affect random telegraph signal (RTS). In this extremely short gate length regime, RTS is proportional to the effective gate length (Leff) which exhibits an “inverse scaling effect.” Process simulation reveals that the laterally straggled and diffused As atoms from source/drain are sufficient to change the effective boron concentration even in the center of the channel which changes macroscale potential profile for the short-channel effect but also changes RTS by modulating random discrete dopant (RDD) effect. This result continues up to 10 000 program/erase cycles which indicates that the defect generation rate for RTS is not changed under the relevant doping conditions. Modeling of the source-drain dopant distribution must include atomistic simulation for accurate prediction of the RDD effect in NAND Flash memory below 30 nm.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 9 )