By Topic

An efficient multiobjective evolutionary algorithm for community detection in social networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Babak Amiri ; The University of Sydney, Sydney, Australia ; Liaquat Hossain ; John W. Crawford

Community detection in complex networks has been addressed in different ways recently. To identify communities in social networks we can formulate it with two different objectives, maximization of internal links and minimization of external links. Because these two objects are correlated, the relationship between these two objectives is a trade-off. This study employed harmony search algorithm, which was conceptualized using the musical process of finding a perfect state of harmony to perform this bi-objective trade-off. In the proposed algorithm an external repository considered to save non-dominated solutions found during the search process and a fuzzy clustering technique is used to control the size of repository. The harmony search algorithm was applied on well-known real life networks, and good Pareto solutions were obtained when compared with other algorithms, such as the MOGA-Net and Newman algorithms.

Published in:

2011 IEEE Congress of Evolutionary Computation (CEC)

Date of Conference:

5-8 June 2011