By Topic

A Memetic Genetic Programming with decision tree-based local search for classification problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pu Wang ; Sch. of Comput. Sci. & Technol., Univ. of Sci. & Technol. of China, Hefei, China ; Ke Tang ; Tsang, E.P.K. ; Xin Yao

In this work, we propose a new genetic programming algorithm with local search strategies, named Memetic Genetic Programming(MGP), for classification problems. MGP aims to acquire a classifier with large Area Under the ROC Curve (AUC), which has been proved to be a better performance metric for traditionally used metrics (e.g., classification accuracy). Three new points are presented in our new algorithm. First, a new representation called statistical genetic decision tree (SGDT) for GP is proposed on the basis of Genetic Decision Tree (GDT). Second, a new fitness function is designed by using statistic in formation from SGDT. Third, the concept of memetic computing is introduced into SGDT. As a result, the MGP is equipped with a local search method based on the training algorithms for decision trees. The efficacy of the MGP is empirically justified against a number of relevant approaches.

Published in:

Evolutionary Computation (CEC), 2011 IEEE Congress on

Date of Conference:

5-8 June 2011