By Topic

A surrogate-assisted memetic co-evolutionary algorithm for expensive constrained optimization problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
C. K. Goh ; Advanced Technology Centre, Rolls-Royce Singapore ; D. Lim ; L. Ma ; Y. S. Ong
more authors

Stochastic optimization of computationally expensive problems is a relatively new field of research in evolutionary computation (EC). At present, few EC works have been published to handle problems plagued with constraints that are expensive to compute. This paper presents a surrogate-assisted memetic co-evolutionary framework to tackle both facets of practical problems, i.e. the optimization problems having computationally expensive objectives and constraints. In contrast to existing works, the cooperative co-evolutionary mechanism is adopted as the backbone of the framework to improve the efficiency of surrogate-assisted evolutionary techniques. The idea of random-problem decomposition is introduced to handle interdependencies between variables, eliminating the need to determine the decomposition in an ad-hoc manner. Further, a novel multi-objective ranking strategy of constraints is also proposed. Empirical results are presented for a series of commonly used benchmark problems to validate the proposed algorithm.

Published in:

2011 IEEE Congress of Evolutionary Computation (CEC)

Date of Conference:

5-8 June 2011