By Topic

A sequential subspace face recognition framework using genetic-based clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Deng Zhang ; Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, Japan ; Shingo Mabu ; Feng Wen ; Kotaro Hirasawa

Different from other classification problems, there are usually a large number of classes in the face recognition. As a result, the recognition accuracy of the traditional subspace face recognition algorithm is unsatisfactory. This paper presents a sequential subspace face recognition framework using an effective genetic-based clustering algorithm (GCA). Firstly, the facial database is decomposed into a double layer database using a face recognition oriented GCA. Then, the face recognition is realized by minimizing the distance measures in a specific cluster as in the traditional subspace face recognition algorithms. The contributions of this study are summarized as follows: 1) The class, i.e., person is regarded as an element in the clustering rather than an image. 2) The proposed GCA uses a novel distance to measure the similarity between a class and the cluster centroids of different clusters. 3) The proposed GCA uses a balance factor to achieve balanced clustering results. Experi mental results on the extended Yale-B database indicate that the proposed sequential subspace face recognition framework has higher accuracy compared with the traditional subspace methods and K-mean+traditional subspace methods.

Published in:

2011 IEEE Congress of Evolutionary Computation (CEC)

Date of Conference:

5-8 June 2011