By Topic

Online learning in estimation of distribution algorithms for dynamic environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
André R. Gonçalves ; School of Electrical and Computer Engineering, University of Campinas (Unicamp), Campinas, SP, Brazil ; Fernando J. Von Zuben

In this paper, we propose an estimation of distribution algorithm based on an inexpensive Gaussian mixture model with online learning, which will be employed in dynamic optimization. Here, the mixture model stores a vector of sufficient statistics of the best solutions, which is subsequently used to obtain the parameters of the Gaussian components. This approach is able to incorporate into the current mixture model potentially relevant information of the previous and current iterations. The online nature of the proposal is desirable in the context of dynamic optimization, where prompt reaction to new scenarios should be promoted. To analyze the performance of our proposal, a set of dynamic optimization problems in continuous domains was considered with distinct levels of complexity, and the obtained results were compared to the results produced by other existing algorithms in the dynamic optimization literature.

Published in:

2011 IEEE Congress of Evolutionary Computation (CEC)

Date of Conference:

5-8 June 2011