By Topic

Representing images by means of interval-valued fuzzy sets. Application to stereo matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Galar, M. ; Dept. of Autom. y Comput., Univ. Publica de Navarra, Pamplona, Spain ; Barrenechea, E. ; Fernandez, J. ; Bustince, H.
more authors

Stereo matching tries to find correspondences between locations in a pair of displaced images of the same scene in order to extract the underlying depth information. Pixel correspondence estimation suffers from occlusions, noise or bias. In this work, we introduce a novel approach to represent images by means of interval-valued fuzzy sets to overcome the uncertainty due to the above mentioned problems. Our aim is to take advantage of this representation in the stereo matching algorithm. The image interval-valued fuzzification process that we propose is based on image segmentation in a different way to the common use of segmentation in stereo vision. We introduce interval-valued fuzzy similarities to compare windows whose pixels are represented by intervals. In the experimental analysis we show the goodness of this representation in the stereo matching problem. The new representation together with the new similarity measure that we introduce shows a better overall behavior with respect to other very well-known methods.

Published in:

Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), 2011 IEEE Symposium on

Date of Conference:

11-15 April 2011