By Topic

A hybrid continuity preserving inference strategy to speed up Takagi-Sugeno multiobjective genetic fuzzy systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cococcioni, M. ; Appl. Res. Dept., NATO Undersea Res. Centre, La Spezia, Italy ; Grasso, R. ; Rixen, M.

The most popular inference method in Takagi-Sugeno (TS) fuzzy systems is the weighted averaging (WA), whereas the most investigated inference method in fuzzy rule-based classifier is probably the winner-takes-all (WTA). This paper first shows the time complexities associated with WA and WTA inference methods in Takagi-Sugeno fuzzy rule-based systems, also highlighting the strengths and the weaknesses of both approaches. Then it argues that using a hybrid of the two inference methods, namely the WTA during identification and the WA during the evaluation, allows advantaging of the strong points of the two methods, without inheriting most of their weakness. In particular, the hybrid formulation has a nice property which can be even mandatory in particular applications: it both guarantees that the TS system is continuous (provided that infinite support membership functions are used) and that it performs an approximate reasoning, by combining the conclusions of more than one rule. The interesting features of the hybrid method are demonstrated on a multiobjective genetic rule learning framework used for regression.

Published in:

Genetic and Evolutionary Fuzzy Systems (GEFS), 2011 IEEE 5th International Workshop on

Date of Conference:

11-15 April 2011