By Topic

KASIA approach vs. Differential Evolution in Fuzzy Rule-Based meta-schedulers for Grid computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Prado, R.P. ; Telecommun. Eng. Dept., Univ. of Jaen, Linares, Spain ; Garcia-Galan, S. ; Exposito, J.E.M.

Many efforts have been made in the last few years to solve the high-level scheduling problem in Grid computing, i.e., the efficient resources utilization and allocation of workload within resources domains. Nowadays, some trends are based on the consideration of Fuzzy Rule-Based Systems, whose performance is critically conditioned to theirs knowledge bases quality. In this sense, Genetic Algorithms have been extensively used to obtain such knowledge bases, mainly founded on Pittsburgh approach. However, new strategies are recently emerging showing improvement over genetic-based learning methods. In this work, comparative results of two non-genetic learning strategies derived from bio-inspired algorithms, Differential Evolution and Particle Swarm Optimization, are presented for the evolution of fuzzy rule-based meta-schedulers in Grid computing.

Published in:

Genetic and Evolutionary Fuzzy Systems (GEFS), 2011 IEEE 5th International Workshop on

Date of Conference:

11-15 April 2011