By Topic

Clustering categorical data: A stability analysis framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jarman, I.H. ; Centre for Public Health, Liverpool John Moores Univ., Liverpool, UK ; Etchells, T.A. ; Lisboa, P.J.G. ; Beynon, C.M.
more authors

Clustering to identify inherent structure is an important first step in data exploration. The k-means algorithm is a popular choice, but K-means is not generally appropriate for categorical data. A specific extension of k-means for categorical data is the k-modes algorithm. Both of these partition clustering methods are sensitive to the initialization of prototypes, which creates the difficulty of selecting the best solution for a given problem. In addition, selecting the number of clusters can be an issue. Further, the k-modes method is especially prone to instability when presented with `noisy' data, since the calculation of the mode lacks the smoothing effect inherent in the calculation of the mean. This is often the case with real-world datasets, for instance in the domain of Public Health, resulting in solutions that can be radically different depending on the initialization and therefore lead to different interpretations. This paper presents two methodologies. The first addresses sensitivity to initializations using a generic landscape mapping of k-mode solutions. The second methodology utilizes the landscape map to stabilize the partition clusters for discrete data, by drawing a consensus sample in order to separate signal from noise components. Results are presented for the benchmark soybean disease dataset, an artificially generated dataset and a case study involving Public Health data.

Published in:

Computational Intelligence and Data Mining (CIDM), 2011 IEEE Symposium on

Date of Conference:

11-15 April 2011