Cart (Loading....) | Create Account
Close category search window
 

Human tracking in thermal catadioptric omnidirectional vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yazhe Tang ; Dept. of Manuf. Eng. & Eng. Manage., City Univ. of Hong Kong, Kowloong, China ; Youfu Li ; Tianxiang Bai ; Xiaolong Zhou
more authors

We propose to explore a novel tracking system for human tracking in thermal catadioptric omnidirectional (TCO) vision, which is able to realize the surveillance in all-weather and wide field of view conditions. In contrast, previous human tracking system mainly focuses on tracking in conventional imaging system. In this paper, the proposed tracking method adopts the classification posterior probability of Support Vector Machine (SVM) to relate the observation likelihood of particle filter for efficient tracking. However, previous works only employ the final output label of SVM for classification. Due to no existing TCO vision dataset available in public, we establish a dataset including TCO videos and extracted human samples to train the classifier and test the proposed tracking method. Moreover, we adjust tracking window distribution of particle filter to fit the characteristic of catadioptric omnidirectional vision which is the size of target in omni-image depends on the distance between target image and the center of catadioptric omnidirectional image. Finally, the experimental results show that our proposed tracking method has a stable and good performance in TCO vision tracking system.

Published in:

Information and Automation (ICIA), 2011 IEEE International Conference on

Date of Conference:

6-8 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.