By Topic

Coherence Resonance of Excitable Chaotic Spiking Hindmarsh-Rose Neuron Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Guang-Jun Zhang ; Sch. of Sci., Airforce Univ. of Eng., Xi'an, China ; Jue Wang ; Hong Yao ; Xiang-bo Wang
more authors

In contrast to the previous researches on coherence resonance (CR), which have dealt with CR of periodic spiking neuron model, in this paper the characteristic of CR of chaotic neuron model, is researched. Whether CR of chaotic excitable neuron model can occur typically is of particular importance in neurophysiology, where CR is positive effect on transmission of neural information because noise can make the unordered chaotic spiking series of neurons more ordered. Here we show, based on a physical analysis and numerical evidence, that CR in the chaotic region of system bifurcation parameter can occur in the Hind marsh-Rose (HR) neuron model. Different from the previous results about CR that the occurrence and characterisitc of CR are dependent on the distance between the bifurcation point and bifurcation parameter, the occurrence and characterisitc of CR in this case are independent on the value of bifurcation parameter. CR in this case, which is relevant to an experimental phenomenon observed in neural electro physiology experiment, can be expected to occur commonly in other chaotic spiking neuron model.

Published in:

Network Computing and Information Security (NCIS), 2011 International Conference on  (Volume:2 )

Date of Conference:

14-15 May 2011