By Topic

Predictive Data Grouping and Placement for Cloud-Based Elastic Server Infrastructures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tirado, J.M. ; Comput. Sci. & Eng. Dept., Carlos III Univ. of Madrid, Leganes, Spain ; Higuero, D. ; Isaila, F. ; Carretero, J.

Workload variations on Internet platforms such as YouTube, Flickr, LastFM require novel approaches to dynamic resource provisioning in order to meet QoS requirements, while reducing the Total Cost of Ownership (TCO) of the infrastructures. The economy of scale promise of cloud computing is a great opportunity to approach this problem, by developing elastic large scale server infrastructures. However, a proactive approach to dynamic resource provisioning requires prediction models forecasting future load patterns. On the other hand, unexpected volume and data spikes require reactive provisioning for serving unexpected surges in workloads. When workload can not be predicted, adequate data grouping and placement algorithms may facilitate agile scaling up and down of an infrastructure. In this paper, we analyze a dynamic workload of an on-line music portal and present an elastic Web infrastructure that adapts to workload variations by dynamically scaling up and down servers. The workload is predicted by an autoregressive model capturing trends and seasonal patterns. Further, for enhancing data locality, we propose a predictive data grouping based on the history of content access of a user community. Finally, in order to facilitate agile elasticity, we present a data placement based on workload and access pattern prediction. The experimental results demonstrate that our forecasting model predicts workload with a high precision. Further, the predictive data grouping and placement methods provide high locality, load balance and high utilization of resources, allowing a server infrastructure to scale up and down depending on workload.

Published in:

Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM International Symposium on

Date of Conference:

23-26 May 2011