By Topic

SLA-Based Resource Allocation for Software as a Service Provider (SaaS) in Cloud Computing Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Linlin Wu ; Dept. of Comput. Sci. & Software Eng., Univ. of Melbourne, Melbourne, VIC, Australia ; Saurabh Kumar Garg ; Rajkumar Buyya

Cloud computing has been considered as a solution for solving enterprise application distribution and configuration challenges in the traditional software sales model. Migrating from traditional software to Cloud enables on-going revenue for software providers. However, in order to deliver hosted services to customers, SaaS companies have to either maintain their own hardware or rent it from infrastructure providers. This requirement means that SaaS providers will incur extra costs. In order to minimize the cost of resources, it is also important to satisfy a minimum service level to customers. Therefore, this paper proposes resource allocation algorithms for SaaS providers who want to minimize infrastructure cost and SLA violations. Our proposed algorithms are designed in a way to ensure that Saas providers are able to manage the dynamic change of customers, mapping customer requests to infrastructure level parameters and handling heterogeneity of Virtual Machines. We take into account the customers' Quality of Service parameters such as response time, and infrastructure level parameters such as service initiation time. This paper also presents an extensive evaluation study to analyze and demonstrate that our proposed algorithms minimize the SaaS provider's cost and the number of SLA violations in a dynamic resource sharing Cloud environment.

Published in:

Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM International Symposium on

Date of Conference:

23-26 May 2011