By Topic

Design and implementation of Abacus switch: a scalable multicast ATM switch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chao, H.J. ; Dept. of Electr. Eng., Polytech. Univ., Brooklyn, NY, USA ; Byeong-Seog Choe ; Jin-Soo Park ; Uzun, N.

Describes a new architecture for a multicast ATM switch scalable from a few tens to a few thousands of input ports. The switch, called the Abacus switch, has a nonblocking switch fabric followed by small switch modules at the output ports. It has buffers at input and output ports. Cell replication, cell routing, output contention resolution, and cell addressing are all performed in a distributed way so that it can be scaled up to thousands of input and output ports. A novel algorithm has been proposed to resolve output port contention while achieving input buffers sharing, fairness among the input ports, and call splitting for multicasting. The channel-grouping mechanism is also adopted in the switch to reduce the hardware complexity and improve the switch's throughput, while the cell sequence integrity is preserved. The switch can also handle multiple priority traffic by routing cells according to their priority levels. The performance study of the Abacus switch in throughput, average cell delay, and cell loss rate is presented. A key ASIC chip for building the Abacus switch, called the ARC (ATM routing and concentration) chip, contains a two-dimensional array (32×32) of switch elements that are arranged in a crossbar structure. It provides the flexibility of configuring the chip into different group sizes to accommodate different ATM switch sizes. The ARC chip has been designed and fabricated using 0.8 μm CMOS technology and tested to operate correctly at 240 MHz

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:15 ,  Issue: 5 )