By Topic

TORUS: terabit-per-second ATM switching system architecture based on distributed internal speed-up ATM switch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Genda, K. ; NTT Network Service Syst. Labs., Tokyo, Japan ; Yamanaka, N.

A high-speed and distributed ATM switch architecture, called the TORUS switch, is proposed with the aim of achieving a terabit-per-second ATM switching system. The switch is a distributed and scalable internal speed-up crossbar-type ATM switch with cylindrical structure. The self-bit-synchronization technique and optical interconnection technology are combined to achieve gigabit-rate cell transmission, where high-density implementation technologies such as multichip module technology are not required at all. Also, distributed contention control based on the fixed output-precedence scheme is newly adopted. This control is very suitable for high-speed devices because its circuit is achieved with only one gate in each crosspoint. A TORUS switch is fabricated as a 4×2 switch module using optical interconnection technology and very high-speed crosspoint LSIs, constructed using an advanced Si-bipolar process. Measured results confirm that the TORUS switch can be used to realize an expandable terabit-rate ATM switch

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:15 ,  Issue: 5 )