By Topic

GPU-Accelerated Multi-Profile Radiative Transfer Model for the Infrared Atmospheric Sounding Interferometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mielikainen, J. ; Univ. of Eastern Finland, Kuopio, Finland ; Bormin Huang ; Huang, H.A.

In this paper, we develop a novel Graphics Processing Unit (GPU)-based high-performance Radiative Transfer Model (RTM) for the Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 onboard the first European meteorological polar-orbiting satellites, METOP-A. The proposed GPU RTM processes more than one profile at a time in order to gain a significant speedup compared to the case of processing just one profile at a time. The radiative transfer model performance in operational numerical weather prediction systems nowadays still limits the number of channels they can use in hyperspectral sounders to only a few hundreds. To take the full advantage of such high resolution infrared observations, a computationally efficient radiative transfer model is needed. Our GPU-based IASI radiative transfer model is developed to run on a low-cost personal supercomputer with 4 NVIDIA Tesla C1060 GPUs with total 960 cores, delivering near 4 TFlops theoretical peak performance. The model exhibited linear scaling with the number of graphics processing units. Computing 10 IASI radiance spectra simultaneously on a GPU, we reached 763x speedup for 1 GPU and 3024x speedup for all 4 GPUs, both with respect to the original single-threaded Fortran CPU code. The significant 3024x speedup means that the proposed GPU-based high-performance forward model is able to compute one day's amount of 1,296,000 IASI spectra within 6 minutes, whereas the original CPU-based version will impractically take more than 10 days. The GPU-based high-performance IASI radiative transfer model is suitable for the assimilation of the IASI radiance observations into the operational numerical weather forecast model.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:4 ,  Issue: 3 )