By Topic

Adaptive Neural Output Feedback Controller Design With Reduced-Order Observer for a Class of Uncertain Nonlinear SISO Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yan-Jun Liu ; Sch. of Sci., Liaoning Univ. of Technol., Jinzhou, China ; Shao-Cheng Tong ; Dan Wang ; Tie-Shan Li
more authors

An adaptive output feedback control is studied for uncertain nonlinear single-input-single-output systems with partial unmeasured states. In the scheme, a reduced-order observer (ROO) is designed to estimate those unmeasured states. By employing radial basis function neural networks and incorporating the ROO into a new backstepping design, an adaptive output feedback controller is constructively developed. A prominent advantage is its ability to balance the control action between the state feedback and the output feedback. In addition, the scheme can be still implemented when all the states are not available. The stability of the closed-loop system is guaranteed in the sense that all the signals are semiglobal uniformly ultimately bounded and the system output tracks the reference signal to a bounded compact set. A simulation example is given to validate the effectiveness of the proposed scheme.

Published in:

Neural Networks, IEEE Transactions on  (Volume:22 ,  Issue: 8 )