By Topic

In Vitro Identification of Four-Element Windkessel Models Based on Iterated Unscented Kalman Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Huan Huang ; Dept. of Instrum. Sci. & Eng., Shanghai Jiaotong Univ., Shanghai, China ; Ming Yang ; Wangfu Zang ; Shunjie Wu
more authors

Mock circulatory loops (MCLs) have been widely used to test left ventricular assist devices. The hydraulic properties of the mock systemic arterial system are usually described by two alternative four-element windkessel (W4) models. Compared with three-element windkessel model, their parameters, especially the inertial term, are much more difficult to estimate. In this paper, an estimator based on the iterated unscented Kalman filter (IUKF) algorithm is proposed to identify model parameters. Identifiability of these parameters for different measurements is described. Performance of the estimator for different model structures is first evaluated using numerical simulation data contaminated with artificial noise. An MCL is developed to test the proposed algorithm. Parameter estimates for different models are compared with the calculated values derived from the mechanical and hydraulic properties of the MCL to validate model structures. In conclusion, the W4 model with an inertance and an aortic characteristic resistance arranged in series is proposed to represent the mock systemic arterial system. Once model structure is appropriately selected, IUKF can provide reasonable estimation accuracy in a limited time and may be helpful for future clinical applications.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 9 )