System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Multilevel Fast Multipole Algorithm-Based Direct Solution for Analysis of Electromagnetic Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhaoneng Jiang ; Dept. of Commun. Eng., Nanjing Univ. of Sci. & Technol., Nanjing, China ; YiJun Sheng ; Songge Shen

In this communication, a multilevel fast multipole algorithm (MLFMA)-based direct method is proposed for solving electromagnetic scattering problems that are formulated using the electric-field integral equation (EFIE) approach. The method is based on the multilevel compressed block decomposition (MLCBD) algorithm. Previously, the matrix filling procedure of the MLCBD is based on the matrix decomposition algorithm-singular value decomposition (MDA-SVD) method. Although the MDA-SVD is more efficient than direct filling, it requires a longer filling time for the far-field matrix than for the MLFMA. The problems are used to demonstrate that the matrix filling memory requirement of the MDA-SVD is also higher than that of the MLFMA. Hence, the MLFMA is utilized to reduce both the matrix filling time and memory of the MLCBD. Numerical results are presented to demonstrate the accuracy and efficiency of the proposed method.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 9 )