By Topic

Integral Equation Based Domain Decomposition Method for Solving Electromagnetic Wave Scattering From Non-Penetrable Objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhen Peng ; ElectroSci. Lab., Ohio State Univ., Columbus, OH, USA ; Xiao-Chuan Wang ; Lee, J.-F.

The integral equation (IE) method is commonly utilized to model time-harmonic electromagnetic (EM) problems. One of the greatest challenges in its applications arises in the solution of the resulting ill-conditioned matrix equation. We introduce a new domain decomposition method (DDM) for the IE solution of EM wave scattering from non-penetrable objects. The proposed method is a non-overlapping/non-conformal DDM and it provides a computationally efficient and effective preconditioner for the IE matrix equations. Moreover, the proposed approach is very suitable for dealing with multi-scale electromagnetic problems since each sub-domain has its own characteristics length and will be meshed independently. Furthermore, for each sub-domain, we are free to choose the most effective IE sub-domain solver based on its local geometrical features and electromagnetic characteristics. Additionally, the multilevel fast multi-pole algorithm (MLFMA) is utilized to accelerate the computations of couplings between sub-domains. Numerical results demonstrate that the proposed method yields rapid convergence in the outer Krylov iterative solution process. Finally, simulations of several large-scale examples testify to the effectiveness and robustness of the proposed IE based DDM.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 9 )