By Topic

Structural Characterization of the Whisker System of the Rat

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Voges, D. ; Ilmenau Univ. of Technol., Ilmenau, Germany ; Carl, K. ; Klauer, G.J. ; Uhlig, R.
more authors

Vibrissae or tactile hairs, commonly known as whiskers, are the mechanical gates of special mechano-sensitive organs. In terrestrial mammals, they carry various functions, especially object determination and texture discrimination. We hypothesise that the characteristic morphology and structure of whiskers is a primary morphological condition for their mechano-sensitive functions. To constitute mathematical models on the systematic but different mechanical behavior of the main types of whisker hairs (micro vibrissae, macro vibrissae, straddlers), information is lacking on the distribution of properties in a field of all three types of hairs, taken from one and the same animal. Referring to sets taken from five individuals, geometry data is provided as one complete set for a female rat (Rattus norvegicus). Due to measurements of diameters along the length, the shape of whiskers in rats is confirmed to resemble a cone, which may be overlaid by some convexity or concavity. Additionally, the surface and internal structure of different vibrissae were examined by scanning electron microscopy. The cuticle of the rat whisker consists of flat scales, overlapping like roofing slates. A cross section reveals up to 20 superposed layers of cuticular scales. The longitudinal dimension of one scale is shorter in whiskers compared with body hairs. A hollow medulla is observed from the base to approximately half of the overall length, which is then partially filled by compact tissue, until it disappears completely near the tip. An extraordinarily thick cortex probably rules the characteristic bending features, and the multilayer cuticle probably has a mainly protective function.

Published in:

Sensors Journal, IEEE  (Volume:12 ,  Issue: 2 )