By Topic

Exploiting query click logs for utterance domain detection in spoken language understanding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hakkani-Tur, D. ; Speech Labs., Microsoft Res., Mountain View, CA, USA ; Heck, L. ; Tur, G.

In this paper, we describe methods to exploit search queries mined from search engine query logs to improve domain detection in spoken language understanding. We propose extending the label propagation algorithm, a graph-based semi-supervised learning approach, to incorporate noisy domain information estimated from search engine links the users click following their queries. The main contributions of our work are the use of search query logs for domain classification, integration of noisy supervision into the semi-supervised label propagation algorithm, and sampling of high-quality query click data by mining query logs and using classification confidence scores. We show that most semi-supervised learning methods we experimented with improve the performance of the supervised training, and the biggest improvement is achieved by label propagation that uses noisy supervision. We reduce the to error rate of domain detection by 20% relative, from 6.2% to 5.0%.

Published in:

Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on

Date of Conference:

22-27 May 2011