By Topic

Recent progress in prosodic speaker verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kockmann, M. ; Speech at FIT, Brno Univ. of Technol., Brno, Czech Republic ; Ferrer, L. ; Burget, L. ; Shriberg, E.
more authors

We describe recent progress in the field of prosodic modeling for speaker verification. In a previous paper, we proposed a technique for modeling syllable-based prosodic features that uses a multinomial subspace model for feature extraction and within-class covariance normalization or linear discriminant analysis for session variability compensation. In this paper, we show that performance can be significantly improved with the use of probabilistic linear discriminant analysis (PLDA) for session variability compensation. This system does not require score normalization. We report an equal error rate below 7% on a NIST 2008 task. To our knowledge, this is the best reported result to date for a prosodic system for speaker recognition. Fusion of this system with a state-of-the-art acoustic baseline system yields 10% relative improvement in the new detection cost function (DCF) as defined by NIST.

Published in:

Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on

Date of Conference:

22-27 May 2011