By Topic

Tracking and counting people in visual surveillance systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chih-Chang Chen ; Dept. of Electrical Engineering, National Chung Cheng University, Chia-Yi, Taiwan ; Hsing-Hao Lin ; Oscal T. -C. Chen

The greatest challenge on monitoring characters from a monocular video scene is to track targets under occlusion conditions. In this work, we present a scheme to automatically track and count people in a surveillance system. First, a dynamic background subtraction module is employed to model light variation and then to determine pedestrian objects from a static scene. To identify foreground objects as characters, positions and sizes of foreground regions are treated as decision features. Moreover, the performance to track individuals is improved by using the modified overlap tracker, which investigates the centroid distance between neighboring objects to help on target tracking in occlusion states of merging and splitting. On the experiments of tracking and counting people in three video sequences, the results exhibit that the proposed scheme can improve the averaged detection ratio about 10% as compared to the conventional work.

Published in:

2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Date of Conference:

22-27 May 2011