By Topic

Multivariate texture retrieval using the SIRV representation and the geodesic distance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bombrun, L. ; Lab. IMS, Univ. de Bordeaux, Talence, France ; Lasmar, N.-E. ; Berthoumieu, Y. ; Verdoolaege, Geert

This paper presents a new wavelet based retrieval approach based on Spherically Invariant Random Vector (SIRV) modeling of wavelet subbands. Under this multivariate model, wavelet coefficients are considered as a realization of a random vector which is a product of the square root of a scalar random variable (called multiplier) with an independent Gaussian vector. We propose to work on the joint distribution of the scalar multiplier and the multivariate Gaussian process. For measuring similarity between two texture images, the geodesic distance is provided for various multiplier priors. A comparative study between the proposed method and conventional models on the VisTex image database is conducted and indicates that SIRV modeling combined with geodesic distance achieves higher recognition rates than classical approaches.

Published in:

Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on

Date of Conference:

22-27 May 2011