By Topic

Evaluating music sequence models through missing data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bertin-Mahieux, T. ; LabROSA, Columbia Univ., New York, NY, USA ; Grindlay, G. ; Weiss, R.J. ; Ellis, D.P.W.

Building models of the structure in musical signals raises the question of how to evaluate and compare different modeling approaches. One possibility is to use the model to impute deliberately removed patches of missing data, then to compare the model's predictions with the part that was removed. We analyze a corpus of popular music audio represented as beat-synchronous chroma features, and compare imputation based on simple linear prediction to more complex models including nearest neighbor selection and shift-invariant probabilistic latent component analysis. Simple linear models perform best according to Euclidean distance, despite producing stationary results which are not musically meaningful. We therefore investigate alternate evaluation measures and observe that an entropy difference metric correlates better with our expectations for musically consistent reconstructions. Under this measure, the best-performing imputation algorithm reconstructs masked sections by choosing the nearest neighbor to the surrounding observations within the song. This result is consistent with the large amount of repetition found in pop music.

Published in:

Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on

Date of Conference:

22-27 May 2011